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Abstract 

Conventionally, Penrose tilings with fivefold sym- 
metry are constructed with the aid of two characteris- 
tic rhombic tiles and sets of rules based on either 
matching of markings on the tiles or their subdivision. 
Both these procedures involve decision making when 
tiling is to be done extensively. In the present com- 
munication, a fool-proof method of producing Pen- 
rose tilings using a set of operations that can be 
repeated ad infinitum is described. The steps in the 
present procedure are akin to conventional crystallo- 
graphic operations and can be expressed in simple 
mathematical terms which bring out some interesting 
aspects of Penrose tilings. 

Introduction 

The pioneering work of Penrose (1974) on tiling a 
floor (Gardner, 1977) to generate patterns exhibiting 
fivefold rotational symmetry, extension of these ideas 
to three dimensions by Mackay (1981) and the sub- 
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sequent discovery by Shechtman, Blech, Gratias & 
Cahn (1984) of quasicrystals with icosahedral sym- 
metry have generated world-wide interest. Several 
methods are now available for the generation of two- 
dimensional aperiodic tilings with forbidden rota- 
tional symmetry. These range in approach from the 
empirical matching rules of Penrose, the geometrical 
approach of Sasisekharan (1986) and dualization of 
periodic pentagrids to projection from higher- 
dimensional space (de Bruijn, 1981). The procedure 
of tiling due to Penrose involves assembling two types 
of rhombs, viz a prolate (or thick) rhomb with acute 
angle 217"/5 and an oblate (or thin) rhomb with acute 
angle 17-/5, or a set of kites and darts. For example, 
the process of building an infnitely large tiling with 
these two types of rhombs consists of marking them 
and laying them edge to edge such that the markings 
match according to set rules so that aperiodicity and 
fivefold symmetry are ensured. The matching rules 
are an expression of the self-similarity transformation 
of the Penrose tiling. Hitherto, this transformation 
has been exploited to generate a large cluster of tiles 
from a cluster of a smaller number of tiles obeying 
the matching rules by subdividing each of its rhombs 
according to a set pattern. The resultant tiling then 
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automatically conforms to matching rules and has 
rhombs of similar shape but smaller size leading to 
an 'inflation' in the number of tiles and vertices in 
the aperiodic lattice. In this communication, we 
demonstrate that a correct Penrose tiling (one without 
'mistakes') (Penrose, 1989) can be generated by a 
new method starting from only the single thick rhomb. 
This is achieved by repeatedly performing a given set 
of operations on the rhomb. Each of these operations 
is akin to normal crystallographic operations and they 
are easily expressed through simple mathematical 
formulae. It will also be shown that the present 
approach brings out certain interesting aspects with 
respect to the coordinates of vertices in a two- 
dimensional Penrose tiling. 

The procedure 

Consider a thick rhomb O B C D  (Fig. la ) .  It fixes the 
domain to be tiled and can be chosen to be as large 
as desired. The first of these operations (the a 
operation) on the rhomb consists of several steps: (i) 
a twofold rotation around the shorter diagonal, DB, 
of the rhomb; (ii) a translation of every point of the 
rhomb along a line joining the point to the centre of 
the rhomb by the distance 1 / r  2 times the original 
distance of the point from the centre. Effectively, this 
step of the a operation reduces the size of the original 
rhomb by the golden mean, ~'; (iii) a further down- 
ward translation of every point obtained by step (ii) 
through a distance 1/~ "2 times the major diagonal of 
the rhomb. 

The second operation, the fl operation, consists of 
rotating every point of the half-rhomb C ' D ' O '  clock- 
wise through -n'/5 around C'  and translating them 
parallel to CO'  such that C ' D ' O '  coincides with 
CC'B ' .  A similar operation on the other half-rhomb 
C ' B ' O '  with an anticlockwise rotation of ~r/5 about 
C '  results in the domain C C ' D  (Fig. 2a). 

The third operation, the ~/ operation, consists of 
rotating every point of the half-rhomb C ' D ' O '  clock- 
wise through 2~r/5 about C '  and retaining all points 
which fall in the domain C'BB' .  A similar operation 
is performed anticlockwise with respect to C ' B ' O '  to 
obtain points in the domain C ' D D '  (Fig. 2b). 

Performance of the a, fl and y operations in that 
sequence or in the sequence a, ~/ and fl completes 
one 'generation'  of inflation. At the end of the first 
sequence of operations the pattern generated inside 
the rhomb is identical to that obtained by using the 
recursive rule for the subdivision of the rhomb (de 
Bruijn, 1981). The same set of operations, in the 
chosen sequence, can be performed repeatedly until 
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Fig. 1. The sequence of steps involved in the a operation. (a) The 
starting rhomb. (b)-(d). The steps of rotation and translation. 
It may be noted that the regions CBC'DC and BO'DC'B are 
the conventional kite and dart regions, respectively. 

Fig. 2. (a) The hatched region O'C'D' is shifted to BCC' as a 
result of the/3 operation and the region O'C'B' goes to DCC' 
after the operation. (b) Part of O'C'D' is rotated clockwise 
through 2~r/5 to superimpose on the domain BC'B' as a result 
of the y+ operation. The ~,- operation takes part of O'C'B' to 
DC'D. 

Fig. 3. Appearance of the rhomb in the third generation. 



208 QUASIPERIODIC PLANE LATTICE WITH FIVEFOLD SYMMETRY 

the desired size of individual tiles is reached. Fig. 3 
shows the resultant pattern after three generations of 
inflation. A point to be noted is that, on conducting 
the 13 and y operations, a domain like C'O'D '  alter- 
nately gets rotated through + zr/5 and +2 zr/5, respec- 
tively, during consecutive generations. This is a result 
of the twofold rotation of the rhomb as the first step 
in the a operation of every generation. We designate 
the operations involving the clockwise rotations as 
/3+ and y+ and those associated with anticlockwise 

(a) 

(b) 

Fig. 4. The final pattern obtained after six generations of 
operations on the initial rhomb of Fig. 1. In (a) we depict the 
pattern as obtained by the a,/3 and 3' operations. If in (a) all 
bonds which do not form the edges of the rhomb are erased we 
obtain a correct Penrose tiling as demonstrated by the corre- 
sponding arrowed pattern in (b). 

rotations as /3- and Y-. At the level of the third 
generation, it may be observed from Fig. 3 that not 
all the eight possible types of configurations of the 
rhomb at a point (or vertices) that have been described 
by Henley (1986) are present. Fig. 4 shows the pattern 
when the operations were repeated for six gener- 
ations. Note that the resultant pattern has a large 
number of bonds which are not equal in length to 
the edge length a of the rhomb. When such bonds 
are neglected (or erased) we get bond orientational 
order and the tiling is according to the Penrose match- 
ing rules. This is demonstrated by the corresponding 
arrowed pattern in Fig. 4(b). In this pattern, all of 
the eight possible types of vertices appear for the first 
time. During further generations, their numbers 
increase and tend towards the z related frequencies 
reported by Henley. The rhomb depicted in Fig. 4(b) 
can be rotated through 2¢r/5 repeatedly to generate 
a Penrose tiling with a global fivefold centre at the 
point O of Fig. 1 (a). 

In the present procedure, one is assured of making 
no mistakes in tiling the originally chosen area with 
progressively decreasing size of tiles of both types. 
Also, the thin rhomb is a result of the operations 
involved and is not postulated a priori. Moreover, the 
deflation scheme followed by the thin rhomb in pro- 
ceeding from one generation to another also arises 
as a natural consequence of the operations postulated 
by us. No predetermined scheme of deflation of the 
thin rhomb need be established. 

The quasilattiee 

Until now we have used the Penrose rhomb as an aid 
to an effective description of the translations and 
rotations involved. We shall now demonstrate that 
these operations when conducted repeatedly on a 
single starting point and all resultant points yield the 
quasilattice formed by the vertices of the tiles. The 
a, /3 and 3' operations described above can con- 
veniently be represented by the following equations 
in the reference frame of orthogonal Cartesian coor- 
dinates with their origin fixed at point O of Fig. l(a) .  

X a = X / r ;  Y ~ = I Y I I r - 2 b ;  

X ~± = X ~ cos zr/5 + Y~ sin ¢r/5; 

Y~± = ~:X" sin 17"/5 + Y~ cos zr/5; 

X ~" = X ~ cos 2¢r/5 + Y~' sin 2zr/5; 

YV± = :t:X" sin 2¢r/5 + Y~' cos 2zr/5 - 2 b / r 2 ;  

where Y~ = ( ya  + 2b/7 "2) with 2b being the length of 
the major diagonal of the rhomb. In the above 
equations, X and Y refer to the initial points while 
X i, Yi (i = a, fl and 7) refer to the coordinates of 
the point resulting from the a, fl and 3/operations, 
respectively. 
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The a operation is performed on all points while 
the /3 and 3' operations are performed on points 
resulting from the a operations. Also, if a point is 
subjected to/3 + and 3'+ operations in a given gener- 
ation, points from it will be subjected to the /3 -  and 
3'- operations in the immediately next generation and 
vice versa. Keeping these aspects in view, one can 
generate a tree (Fig. 5) to describe the recursive 
evolution of the quasilattice points in every gener- 
ation of inflation. A new generation is associated with 
every a operation. In the first operation itself, it is 
sufficient to perform only the 13 + and /3 -  operations. 
Performance of the 3' operation on the initial point 
(Xo, Yo) leads only to superimposition of points and 
is not shown in the tree. Similar overlaps also occur 
at several other nodes in the tree. Also, the points 
generated by the branches of the tree originating at 
the first 13 + and ]3- operations are related through 
mirror symmetry with respect to the major diagonal 
of the rhomb. It should be noted that the number of 
the generation is different from that obtained by the 
graphical procedure described earlier. It will be one 
more than in the graphical case. 

The following additional properties of the quasilat- 
tice are noteworthy and are helpful in arriving at the 
geometrical structure factor. The coordinates of each 
lattice point in the nth generation (X, ,  Y,) are 
expressible in terms of the edge length a, of that 
generation by the following relationships: 

X .  = ( m + nr)a, sin "rr/5; 

Y, = (p+qr)an/2; 

where m, n, p, q are integers. The forms of these 
expressions are themselves indicative of the 
quasiperiodicity. Since the global Penrose tiling is 
obtained by the rotation of the chosen rhomb around 
its vertex at the top and since all resultant points are 
expressible by the above equations, there are certain 
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Fig. 5. The recursive occurrence of quasilattice points in each 
generation, depicted in the form of a tree. 

parity conditions that should be laid on the m, n, p, 
q values. These are 

m n p q 

even even even even 
odd even even odd 
even odd odd odd 
odd odd odd even. 

The nature of the /3 and 3t operations also leads 
to identical restrictions even within the chosen rhomb. 
Further, it can be proved that when the ordinate of 
a point in the nth generation is expressed in terms 
of a , / r  2 or in terms of the  edge length of the (n +2) th  
generation, an additional restriction is placed in that 
m and n have the same sign and p and q have the 
same sign. All points that are vertices in the Penrose 
tiling satisfy these conditions. However, points obey- 
ing these conditions need not necessarily be Penrose 
vertices. 

In the light of these restrictions on m, n, p and q 
and the fact that these can be evaluated along all the 
branches of the tree of Fig. 5, summation of the 
contributions to the diffracted intensity from the 
quasilattice points becomes relatively easy. Further, 
the coordinates obtained by the/3+ operation in any 
generation are related to the coordinates of the points 
obtained from the same node by the a and y 
operations through the following equations: 

X ~ + = ( X , ± + X ~ ) / r ;  

y~± = ( y v + +  y,~)/.r+(4b)/.r2. 

These establish relationships between quasilattice 
points in the kite and dart regions of the main rhomb 
(see caption to Fig. l). Three of the length scales used 
in the present description of the coordinates, viz 
a, sin ~'/5, a,r sin ~'/5 and a,'r/2, represent three of 
the four half-diagonals of the two rhombs used for 
tiling. The unit vectors associated with these can be 
identified with the aid of the projection formalism. 

In conclusion, it can be said that the present 
algorithm is a new look at the Penrose tiling and 
affords a method of deflating a single thick rhomb 
repeatedly and systematically without the need for 
any decision making at every stage. The process can 
be understood in terms of simple operations that 
are very similar to conventional crystallographic 
operations and enables the establishment of a tree- 
related hierarchy of quasilattice points obtained by 
successive deflation of the rhombs used in a tiling. 
The procedure described also identifies a new set of 
diagonally related length scales for the description of 
the coordinates of the quasilattice points in a Car- 
tesian frame of reference. These are combined in 
integral multiples to yield the coordinates of the 
quasilattice points with simple restrictions on the 
parity of the integers involved. 
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The present procedure has direct relevance to the 
structure of decagonal quasicrystalline phases and 
has the potential for extension to the three- 
dimensional quasicrystal. 
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Abstract 

The composition of composite crystals, which contain 
two often incommensurate sublattices, depends on 
the ratio of the volumes of the sublattices and is 
therefore nonstoichiometric if the sublattices are 
incommensurate. The relation between the two sub- 
lattices is described by an interlattice matrix, which 
has different forms for layer and column composite 
structures and is restricted by space-fitting require- 
ments. A previously derived formalism for the 
refinement of incommensurately modulated struc- 
tures [Petricek, Coppens & Becker (1985). Acta Cryst. 
A41,478-483] has been extended to composite struc- 
tures and applied in a new computer program. The 
formalisms have been applied to the composite struc- 
tures of (BEDO-qTF)2.413, (BEDT-TIT)Hgo.776- 
(SCN)2 and (Bi,Sr,Ca)loCu17029. 

Introduction 

As more complicated solids are being synthesized in 
the search for new materials, unusual structural 
phenomena are becoming increasingly common. 
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slovakia. 
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Prime examples are modulations in crystals and the 
occurrence of composite (also called misfit) structures 
which contain at least two components with inter- 
penetrating but distinct lattices. 

When the ratio of the volumes of the unit cells of 
the two sublattices of a composite crystal is irrational, 
the two components will occur in nonstoichiometric 
ratios, the stoichiometry being dictated by the ratio 
of the unit-cell volumes. For ionic or partially ionic 
compounds,  electroneutrality requirements imply 
that composite solids must contain ions of mixed 
valency. Since mixed valency is often associated with 
unusual properties, it is not surprising that the search 
for synthetic metals and superconductors has led to 
the discovery of many new composite solids. Some 
examples of inorganic and organic composite crystals 
are given in Table 1. Other known examples are 
minerals and graphite intercalation compounds 
(Makovicky & Hyde, 1981) and alloys (Jeitschko & 
Parth6, 1967). 

Since the two lattices coexist in the same crystal, 
there is a mutual interaction which corresponds to a 
perturbing potential with the periodicity of the other 
sublattice. The perturbation causes each of the sublat- 
tices to be modulated with a repeat of the perturbing 
potential, which is a translation period of the second 
sublattice. As a result, the diffraction pattern of a 
composite crystal is the superposition of the diffrac- 
tion patterns of the two sublattices, plus satellite 
reflections representing the modulations (Janner & 
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